Бизнес. Личная эффективность. Мотивация. Самообразование. Заработок

Теория очередей математические модели очереди. Общие понятия теории очередей

Проблема очередей - одна из наиболее острых для многих организаций. Люди каждый день стоят в очередях у кассы в продуктовом магазине или у театральной кассы, сидят в ожидании приема у врача, в приемной комиссии вузов или в бюро занятости населения. Модель теории очередей позволяет, повысив эффективность работы организации, уменьшить очереди и подсчитать время ожидания в очереди и приблизительные убытки, которые несет организация из-за наличия очередей. Модель может быть полезна при решении самых разных проблем: менеджерам авиакомпаний (самолеты приземляются и обслуживаются в порядке очереди), работникам магазинов (очереди у кассы), директорам заводов (этапы прохождения сырья через различные производственные циклы), работникам медицинских учреждений (контроль оборачиваемости койко-мест).

Существует большое количество моделей теории очередей из-за необходимости описывать различные ситуации очередей. Очереди при «обслуживании одиночнъос требований», т.е. когда обслуживание происходит в одной точке, бывают, например, у стойки кассира в ресторане или у единственного операционного окна на почте. Очереди при «обслуживании многочисленных требований» наблюдаются, например, на той же почте при одновременном обслуживании несколькими операторами одной очереди.

Ситуации с очередями становятся более сложными при наличии большого количества очередей и большого количества служащих (как в супермаркете) либо когда люди или организационные единицы, нуждающиеся в обслуживании, должны пройти через несколько точек обслуживания (что типично, например, при получении водительских прав).

Выделяют четыре основных типа очередей, схемы которых приведены на рис. 6.15.

Очередь у врачебного кабинета представляет хороший пример одно- каналъной однофазовой очереди. Очередь только одна - существует только один канал обслуживания; врач только один - существует только одна зона обслуживания. Пациенты ожидают приема и допускаются к врачу в соответствии со временем, указанном в талончике.

Ожидание у кассы в продовольственном магазине - типичный пример многоканальной однофазовой очереди.

Примером одноканальной многофазовой очереди служит очередь на мойке автомобилей. Машины стоят в одной очереди, но проходят несколько фаз обслуживания: мойка, ополаскивание, сушка и полировка.

Рис. 6.15.

а - одноканальная; б - многоканальная однофазовая очередь; в - одноканальная многофазовая очередь; г - многоканальная многофазовая очередь

Примеры многофазовых многоканальных очередей в изобилии встречаются на производстве, где выпускается несколько видов продукции. Количество каналов, как правило, соответствует количеству выпускаемых наименований продукции, а количество фаз определяется количеством технологических операций от начала до конца производства.

В отличие от линейного программирования, модель теории очередей, или модель массового обслуживания, не обеспечивает оптимального решения. Более того, модели позволяют менеджерам разнообразить параметры ситуаций и определять возможные последствия.

Например, представьте себя менеджером банка, где есть четыре кассира, которые обслуживают клиентов, заключающих сделки. У каждого из четырех окон существует отдельная очередь. Клиенты всегда склонны выбирать самую короткую очередь. Однако часто случается так, что самая короткая очередь оказывается самой медленной, из-за того что с кем-то в ее начале проводят операцию, требующую длительного времени. Банк обеспокоен тем, что клиенты раздражаются, когда они задерживаются в длинной очереди; от коллег из других банков вы узнаете, что они установили системы, в которых все машины по обработке заявок ожидают в единой очереди, поэтому каждый следующий клиент из очереди направляется к первому освободившемуся окну.

При изучение ситуации оказывается, что клиенты прибывают в среднем со скоростью 16 человек в час, а каждый кассир справляется со сделками со средней скоростью 8 сделок за час.

В этом случае вы могли бы использовать модели теории очередей в качестве помощи, для того чтобы оценить разницу во времени ожидания в действующей системе и в альтернативной системе единой очереди для всех клиентов. Предположим, что анализ модели теории очередей показал, что клиентам приходится ждать обслуживания в среднем 7,5 минут в условиях существующей системы, но они бы ждали в среднем только 0,654 минуты в единой очереди для всех клиентов, и тогда вы, возможно, захотите изменить существующий порядок в целях достижения значительных улучшений в обслуживании. Таким образом, хотя модели теории очередей не подсказывают оптимального решения, они предоставляют данные, необходимые менеджерам для планирования наиболее эффективного обслуживания клиентов и покупателей. Модели теории очередей являются дорогими, если их разрабатывать для уникальных и сложных ситуаций. Однако существующее разнообразие моделей соответствует многим ситуациям, которыми могут заинтересоваться менеджеры. Возрастающее количество таких моделей в пакетах программного обеспечения делает их использование экономнее и проще. Приведем пример, позволяющий понять, каким образом производятся расчеты матрицы массового обслуживания.

Администратор универсама должен обеспечить работу необходимого количества кассиров. Это количество определяется двумя факторами:

  • убытками, которые несет универсам вследствие оплаты простоя кассиров из-за отсутствия покупателей;
  • убытками от потери клиентов из-за долгого ожидания в очередях.

Задача администратора сводится к тому, чтобы минимизировать

убытки как в первом, так и во втором случае. Иначе говоря, администратору нужно добиться самых коротких очередей при минимальном числе работающих кассиров. Он посчитал, что универсам не теряет ни одного клиента в течение первых четырех минут ожидания в очереди. Каждая дополнительная минута обходится универсаму в 10 долларов, так как покупатели устают ждать и покидают магазин. Затем он высчитал, сколько времени покупатели будут стоять в очереди при условии одновременной работы одного, двух, трех и четырех кассиров, а также стоимость работы кассиров. Результаты этих вычислений приведены в табл. 6.5. Подсчитав стоимость каждого варианта, администратор выбирает самый дешевый. Как видно из таблицы, работа одного кассира стоит дешевле, чем работа двух, но работа четырех кассиров обходится магазину дешевле всего.

Описанная ситуация относится к разряду самых простых, в которых может применяться модель массового обслуживания. Вычисления администратора были бы более сложными, если бы он принимал во внимание разницу в покупательских потоках (в часы пик и в спокойные часы) и разницу в оплате труда кассиров при найме на неполный рабочий день. Тем не менее, даже на таком простом примере можно понять полезность использования модели массового обслуживания.

Таблица 6.5

Расчет альтернативных издержек при моделировании массового обслуживания

Теория массового обслуживания (англоязычное название - queueing theory - теория очередей) возникла в начале 20 века. Ее основоположником считается датский ученый А.К. Эрланг, работавший в шведской телефонной компании и занимавшийся вопросами проектирования телефонных сетей. В дальнейшем теория получила интенсивное развитие и применение в различных областях науки, техники, экономики, производства. Это объясняется тем, что эта теория изучает широко распространенные в человеческой практике ситуации, когда имеется некоторый ограниченный ресурс и множество (поток) запросов на его использование, следствием чего являются задержки или отказы в обслуживании некоторых запросов. Стремление понять объективные причины этих задержек или отказов и по возможности уменьшить их воздействие является побудительным мотивом развития теории массового обслуживания.

Как правило, поступление запросов (или их групп) происходит в случайные моменты времени и для их удовлетворения требуется случайная часть ограниченного ресурса (или случайное время его использования). Поэтому изучение процесса удовлетворения потребности в ресурсе (процесса обслуживания) обычно проводится в рамках теории случайных процессов как специальной области теории вероятностей. Иногда исследование процесса обслуживания требует применения достаточно тонких математических методов и серьезного математического аппарата. Это делает полученные результаты практически недоступными инженеру, потенциально заинтересованному в их применении к исследованию реального объекта.

Что, в свою очередь, лишает автора математического результата «обратной связи», важной для правильного выбора направления для дальнейшего обобщения результатов и объектов исследования. Эта серьезная проблема подмечена в обзоре известного специалиста Р. Сиски, отмечающего опасность возможности распада единой теории массового обслуживания на абстрактную и инженерную. Прямым следствием этой проблемы при написании книги обычно является вопрос выбора языка и соответствующего уровня строгости изложения результатов. Данная книга ориентирована как на специалистов в области теории массового обслуживания, так и на специалистов в области ее приложения к исследованию реальных объектов (в первую очередь, компьютерных сетей). Поэтому в данной главе приведем краткий обзор методов анализа систем массового обслуживания на среднем уровне строгости. Предполагается знакомство читателя с теорией вероятностей в рамках курса для технического вуза. При необходимости, некоторые сведения приводятся непосредственно в тексте.

Важным этапом в применении теории массового обслуживания для исследования реального объекта является формальное описание функционирования этого объекта в терминах той или иной системы массового обслуживания (СМО). СМО считается заданной, если полностью описаны следующие ее компоненты:

Входящий поток запросов (заявок, требований, сообщений, вызовов);

Количество и типы обслуживающих устройств (приборов);

Емкости накопителей (буферов), где запросы, заставшие все приборы занятыми, ожидают начала обслуживания;

Времена обслуживания запросов на приборах;

Дисциплина обслуживания (она определяет порядок обработки запроса в системе, начиная с момента его поступления в систему и до момента, когда он покидает СМО).

Стохастическое моделирование

Ключевые слова: стохастичность, теория очередей, системы массового обслуживания, накопитель, очередь, транзакт

Стохастическое моделирование – это один из видов имитационного моделирования, базирующийся на теории Монте-Карло. Его определение можно представить так:

& Стохастическое моделирование (англ. stochastic modeling) – разновидность имитационного моделирования, в котором моделируемый объект представляется в виде совокупности параметров, описывающих внешнюю работу системы (внутренняя особенность объекта неизвестна) и имеющих случайную природу.

Если рассмотренные выше блочные и пошаговые модели со случайными процессами являются во многом детерминированными (их структура полностью или частично известна), то для процессов, имеющих менее определённый характер, требуется иной подход.

С внедрением автоматизации на предприятиях длительность изготовления продукции существенно сократилась за счёт ускорения выполнения роботами операций и внедрения конвейера. Производственный/обслуживающий процесс в основном стал сводиться к последовательности чётко разделённых технологических циклов, следующих друг за другом последовательно. Увеличился объём выпускаемой продукции, а следовательно, и нагрузки на обслуживающие элементы системы, что привело к возникновению задачи эффективной статистической оценки работы как системы в целом, так и её отдельных частей. Так появился подход, называемый теорией массового обслуживания или теорией очередей.

Стохастическое моделирование, или теория очередей – классическая область применения методов имитационного моделирования. Базовыми понятиями в этой области являются очередь , канал обслуживания и транзакт .

В зависимости от сочетания и настроек базовых элементов теории очередей можно описывать сложные технологические процессы, регистрируя только количественные и временные характеристики их работы.

Стохастическое моделирование можно охарактеризовать следующими признаками:

– использованием для моделирования дискретного времени;

– отсутствием информации о внутренней логике работы подсистем (всё задано случайными процессами во времени);

– наличием чёткой последовательности технологических операций в моделируемом процессе;

– рассмотрением однотипных объектов на каждом этапе процесса обслуживания;

– выделением законов движения транзакта путём наблюдения за моделируемой системой и обработки полученной статистики;

– просчётом, который позволяет визуализировать эволюцию модели на каждом шаге моделирования;

– представлением экспериментальных данных в виде таблицы-отчёта и графиков.



Условно в теории очередей рассматривается последовательность изменения состояния обслуживаемой заявки (транзакта) между этапами «поступление», «ожидание в очереди», «обслуживание», «покидание системы». При этом процесс внутренней работы подсистем (обслуживание) не детализируется, как в других моделях, а лишь характеризуется обобщенными временными характеристиками (высокая стохастичность). По этой причине подобные модели получили ещё одно название – системы массового обслуживания .

& Система массового обслуживания (англ. queue(ing) system, СМО ) – система, описывающая движение транзактов в исследуемом сложном объекте, характеризуемом траекторией обслуживания транзактов в виде временных интервалов.

Целью исследования в модели будут этапы обслуживания – наиболее трудно формализуемые элементы в системе.

Каждый этап обслуживания в модели имеет индивидуальную характеристику длительности и обозначается термином «накопитель». Для каждого накопителя в системе можно посчитать пропускную способность (число обслуженных заявок), коэффициент загрузки, среднюю скорость обслуживания одной заявки.

Наряду с накопителями, центральными понятиями в теории очередей являются транзакт и очередь. Рассмотрим их подробней.

& Транзакт (англ. transact) – элементарный элемент обслуживания в модели (заявка), траектория обработки которого описывается на всём этапе его присутствия в системе в соответствии с особенностями технологического процесса.

Транзакт может моделировать человека в очереди, процесс в памяти ЭВМ, товар на прилавке и тому подобное. Каждый транзакт имеет уникальный порядковый номер и обладает рядом характеристик, которые делятся на следующие группы:

1) человеческие (например, клиенты торговой точки);

2) финансовые (например, заявка на денежный перевод в отделение банка);

3) информационные (например, вызов на междугороднюю АТС);

4) прочие (например, техническое устройство, требующее ремонта или обслуживания).

По времени жизни:

1) с фиксированным временем жизни (например, скоропортящийся продукт питания после попадания в торговую точку может находиться там только ограниченное количество времени);

2) с бесконечным временем жизни (например, заявка в отдел заказов книжного магазина на доставку литературы).

По способу обслуживания:

1) с привилегиями, или приоритетами (например, обслуживание в кассе ветеранов Великой Отечественной войны без очереди);

2) без приоритетов (например, очередь в кассу кинотеатра).

Транзакты являются теми элементарными единицами обслуживания в системе, с помощью которых можно производить исследования моделируемых процессов. Последовательная совокупность транзактов, поступающая к месту обслуживания (накопителю), образует поток.

Непосредственно перед входом на этап обслуживания перед накопителем выстраивается очередь, образованная потоком транзактов. Она является важной характеристикой при оценивании работоспособности исследуемой системы, поэтому выделяют следующие виды очередей:

По положению:

1) внешняя (например, ожидание принтером ремонта в сервисном центре);

2) внутренняя (например, ожидание очередного этапа обработки изделия в середине технологического цикла (очередь внутри системы).

По длине:

1) с отказами (например, если на автостоянке нет свободных мест для парковки, то автомобиль уезжает, не дожидаясь освобождения места);

2) фиксированной длины (например, очередь запросов на соединение абонентов на АТС).

3) произвольной длины (например, очередь в супермаркете).

По интенсивности поступления новых запросов:

1) стационарные (регулярное поступление транзактов) (например, скорость движения конвейера задаёт интенсивность поступление товара в очередь для транспортировки на склад);

2) нестационарные (случайная интенсивность поступления транзактов) (например, поступление клиентов к пункту обслуживания столовой).

По направлению обслуживания транзактов:

1) правило FIFO: First Input – First Output, то есть ′первым пришел – первым вышел′ (например, очередь к парикмахерскую);

2) правило FILO: First Input – Last Output, то есть ′первым пришел – последним вышел′ (например, последовательность вынимания из постоянно пополняющегося контейнера деталей для последующей обработки: внизу находятся те детали, которые прибыли в контейнер первыми, поэтому они будут обработаны в последнюю очередь).

3) случайно (например, последовательность регистрации книг, поступивших в одной партии для книжного магазина).

Таким образом, для каждой очереди можно посчитать её среднюю длину; интенсивность поступления и выбытия из очереди; процент заявок, вышедших из системы по истечению срока ожидания; вероятность того, что система будет свободна; вероятность нахождения определённого числа клиентов в системе.

К перечисленным характеристикам добавляется параметр различного приоритета транзактов, что усложняет поведение заявок в системе. Многие процессы, сводимые к теории массового обслуживания, достаточно сложно оценить аналитически. Поэтому имитирование работы подобных систем – рациональный подход для определения характеристик исследуемой предметной области.

Называется также теорией очередей и используется для решения задач оптимизации обслуживания. Рассматривает вероятные модели реальных систем обслуживания. Она используется для минимизации издержек в сфере обслуживания, в производстве, в торговле.

Теория массового обслуживания позволяет определить явные и неявные потери предприятия (общества в целом) при возникновении очередей.

Пример явных потерь – потери рабочего времени основного персонала при возникновении очереди на обслуживании (на проходной предприятия, при обеспечении необходимым инвентарем и т.д.). Расчет явных потерь имеет практическое значение в тех случаях, когда предприятие заинтересовано в увеличении объема продукции. Для определения таких потерь необходимо иметь информацию о значении следующих факторов:

- «цена» минуты рабочего времени основного персонала;

Потери рабочего времени в минутах;

Затраты на привлечение дополнительных работников обслуживания.

Определить цену единицы рабочего времени можно, зная трудоемкость единицы продукции и ее стоимость. Затраты на привлечение дополнительного персонала также несложно определить, представив их как сумму заработной платы работника. Сложнее определить средние потери рабочего времени в ожидании обслуживания. Для решения этой задачи необходимы хронометражные замеры о потоке требований на обслуживание в единицу времени.

Неявные потери состоят в «потерянных клиентах» при обслуживании, например, телефонистками. При этом предполагается, что при возникновении очереди клиент отказывается от обслуживания. При определении неявных потерь рассчитывается упущенная выгода – если известна так называемая «вероятность отказов», можно определить, какую сумму прибыли предприятие могло бы получить дополнительно, если увеличить количество обслуживающего персонала.

Существуют несколько моделей очередей в системах обслуживания. Широко применима простейшая из них одноканальная пуассоновская система с пуассоновским входящим потоком и бесконечным источником требований. В этой модели учитываются:



Средняя частота поступления требований, которая может быть получена по данным хронометража – А;

Средняя пропускная способность канала обслуживания, которая определяется как величина, обратная времени обслуживания – S.

Указанная модель включает в себя следующие характеристики и уравнения:

1. Коэффициент использования системы: A/S.

2. Среднее число клиентов в системе: A / (S-A).

3. Среднее число клиентов, ожидающих в очереди: A 2 / .

4. Среднее время нахождения клиента в системе: 1 / (S-A).

5. Среднее время стояния в очереди: A / .

6. Удельный вес простоев: 1 – A / S.

Пример. Допустим, что в магазин, в котором работает один продавец, заходит в среднем по 18 покупателей в час. Время обслуживания одного покупателя составляет 2 минуты. Исходя из этого:

А = 18 S = 60/3 = 20.

Среднее количество покупателей в очереди = 324/ (20*(20-18))= 8,1.

Среднее время пребывания в очереди = 18/(20*(20-18)) = 0,45 часа.

Если увеличить количество продавцов, то изменится пропускная способность (S = 40) и соответственно изменятся остальные параметры:

Среднее количество покупателей в очереди = 324/ (40*(40-18))= 0,36.

Среднее время пребывания в очереди = 18/(40*(40-18)) = 0,02 часа.

Предположим, что каждый покупатель приносит магазину прибыль в сумме 10 р. Если магазин работает 12 часов ежедневно, то сумму дополнительной прибыли за месяц можно рассчитать:

Прибыль = 10 * 8 * 12 * 30 = 28800 р.

После проведения расчетов необходимо сделать вывод, насколько целесообразно увеличивать количество обслуживающего персонала.

Вопрос 62 Технологическая карта понятия назначение и ее содержание

Технологическая карта - это стандартизированный документ, содержащий необходимые сведения, инструкции для персонала, выполняющего некий технологический процесс или техническое обслуживание объекта.

Технологическая карта (ТК) должна отвечать на вопросы:

Какие операции необходимо выполнять

В какой последовательности выполняются операции

С какой периодичностью необходимо выполнять операции (при повторении операции более одного раза)

Сколько уходит времени на выполнение каждой операции

Результат выполнения каждой операции

Какие необходимы инструменты и материалы для выполнения операции.

Технологические карты разрабатываются в случае:

Высокой сложности выполняемых операций;

Наличие спорных элементов в операциях, неоднозначностей;

При необходимости определения трудозатрат на эксплуатацию объекта.

Как правило, ТК составляется для каждого объекта отдельно и оформляется в виде таблицы. В одной ТК могут быть учтены различные, но схожие модели объектов. Технологическая карта составляется техническими службами предприятия и утверждается руководителем предприятия (главным инженером, главным агрономом).

Технологическая карта наряду с ПОС и проектом производства работ является основным организационно-технологическим документом в строительстве.

Технологическая карта содержит комплекс мероприятий по организации труда с наиболее эффективным использованием современных средств механизации, технологической оснастки, инструмента и приспособлений. В технологическую карту включаются наиболее прогрессивные и рациональные методы по технологии строительного производства, способствующие сокращению сроков и улучшению качества работ, снижению их себестоимости. Технологическая карта обеспечивает не только экономное и высококачественное, но и безопасное выполнение работ, поскольку содержит нормативные требования и правила безопасности.

Наличие организационно-технологических документов, в том числе технологических карт, и их использование в строительном производстве во многом предопределяют мощь и конкурентоспособность строительной организации.

Технологические карты могут использоваться при лицензировании строительной организации - в качестве документов, подтверждающих готовность организации к производству работ, при сертификации систем качества и строительной продукции - в качестве стандартов предприятия.
Технологическая карта составляется для использования в составе проекта производства работ: на возведение здания, сооружения или его части; на выполнение отдельных видов работ: геодезических, земляных, свайных, каменных, монтажных, бетонных (опалубочных, арматурных), кровельных, отделочных, устройства полов, санитарно-технических и тому подобных работ;
на работы подготовительного периода строительства.
Технологическая карта может быть использована при разработке проекта организации строительства, при подготовке тендерной (договорной) документации подряда, для контроля качества выполнения работ заказчиками, генеральными подрядчиками и надзорными органами, при обучении и повышении квалификации рабочих и ИТР, в учебном процессе в строительных вузах и техникумах.
Технологическая карта составляется на специальные работы, в результате которых создаются конструктивные элементы здания, например монтаж подкрановых балок, колонн, стеновых панелей, трубопроводов, систем отопления, вентиляции, водоснабжения.
Технологическая карта разрабатывается для обеспечения строительства рациональными решениями по организации, технологии и механизации строительных работ.
Для составления технологической карты подготавливаются и принимаются решения по выбору технологии (состава и последовательности технологических процессов) строительного производства, по определению состава и количества строительных машин и оборудования, технологической оснастки,

Вопрос 63 Основные черты и этапы стратегического менеджмента .

Причины возникновения страт. мен-та:

Насыщенность рынка товарами и услугами;

Технологические новшества, вызванная научно-технич революция;

Глобализация рынков.

Страт. мен-т – это область деятельности высшего руководства организации, главная обязанность которого состоит в определении предпочтительных направлений и траекторий развития организации, постановки целей, распределения ресурсов и всего того, что дает организации конкурентные преимущества (Зайцев, Соколова).

· Страт. мен-т – это деятельность по разработке миссии, важнейших целей орг и способов их достижения, обеспечивающих её развитие в нестабильной внешней среде путем изменения и самой орг и её внешней среды.

Преимущества стратегического мен-та:

Усиливает конкурентные возможности орг

Позволяет рационально распределять ресурсы

Улучшает адаптацию орг к изменениям внешней средыСпособствует созданию команды.

Объект СМ - организация.

Принципы стратегического управления:

· Обоснованный сознательный выбор цели стратегического развития

· Постоянный поиск новых видов деятельности, направленных на укрепление конкурентных преимуществ

· Индивидуализация стратегий

· Каждая стратегия состоит из 2 частей: запланированная и незапланированная, те продиктованная внешней средой

· Соотношение целей с внешней средой

Этапы стратегического менеджмента.

1 этап – выбор цели с учетом финансового положения фирмы. Здесь можно выделить следующие варианты (типы целей):

а) восстановление платежеспособности; такая цель очень актуальна для нашей экономики, когда рабочие сидят без оплаты, а главная забота руководителя – избежать банкротства;

б) увеличение массы и нормы прибыли;

в) диверсификация, то есть освоение новых сфер деятельности;

2 этап – уточнение, дифференциация цели. Исходя из рыночной ситуации намечается:

а) проникновение на новый рынок – наступательная стратегия фирмы на основе вытеснения конкурентов с этого рынка или сотрудничество с ними;

б) сохранение и развитие рыночных позиций – оборонительная стратегия;

3 этап – выбор типа маркетинговой, конкурентной стратегии. Можно выделить четыре варианта такой стратегии:

а) неценовая конкуренция при широком ассортименте. Данный тип маркетинговой стратегии означает, что фирма конкурентоспособна в связи с уникальным качеством, а не низкой ценой про­дукции. Это самый перспективный вид конкуренции. Он означает, что только данное предприятие умеет изготавливать определенные изделия и, не снижая цены, конкурентоспособна за счет каче­ства.

4 этап – дифференциация целей в зависимости от этапов жизненного цикла изделия.

5 этап – сегментация рынка и выбор цели для каждого сегмента. Цели фирмы дифференцируются по различным сферам управленческой деятельности. К числу контролируемых показателей можно отнести: сбыт (объем реализации); доходы; уровень конкуренции; динамику цены..

6 этап – разработка целевых программ, обеспечивающих достижение целей.

Базовая цель предприятия дифференцируется для отдельных областей (сегментов)

Загрузка...